

KEY POINTS

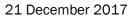
Carawine

Resources

MITED ACN 611 352 348

- Cobalt-manganese mineralisation defined in outcrop over a 1 km strike at the Xmas prospect
- Contact zone confirmed as source of large historic surface cobalt lag anomaly
- Historic rock chip sampling returned results up to 0.31% cobalt and 55.8% manganese
- Two new exploration licence applications extend regional strike potential to over 50km
- Further geological mapping and sampling planned for Q1 2018

Minerals explorer **Carawine Resources Limited ("Carawine" "the Company") (ASX:CWX)** is pleased to announce it has confirmed the presence of a potentially significant cobalt-manganese target at its Oakover project in Western Australia's Eastern Pilbara region, identifying the source of a large surface cobalt anomaly at the historic Xmas prospect.


Carawine Managing Director David Boyd said confirmation of the cobalt-manganese outcrop as the source of the lag anomaly raises the potential of the region to host significant cobalt-manganese mineralisation. Carawine recently applied for two new exploration licences to cover the Xmas host formation and extend its dominant tenement position in the region.

"It's encouraging to finish the year with such strong results and increase our footprint in the region," Mr Boyd said. "We're looking forward to 2018, with Xmas one of a number of cobalt and copper targets within the Oakover Project that we plan to follow up with additional ground work."

CRA Exploration identified the Xmas prospect in the early 1990s, defining a 3km long by 0.75km wide area of anomalous cobalt from 100ppm up to 4,930ppm (0.5%) and manganese from 2.7% to 34.5% in surface lag samples (Figure 1, Appendix 1). Subsequent geological mapping identified a discontinuous lens of massive to brecciated cobalt-manganese mineralisation exposed for more than 1 km of strike along a clearly defined stratigraphic contact, coincident with the eastern edge of the lag anomaly. Selective rock chip samples of these outcrops returned values ranging from 25ppm up to 3,140 ppm (0.31%) Co, and 0.03% to 55.8% Mn (Table 1, Figure 1, Appendix 1), confirming the contact zone mineralisation as the source of the lag anomaly.

Sample	Co (ppm)	Mn (%)	Zn (ppm)	Ba (ppm)	Zn (ppm)	Sample description
3681030	3,140	28.4	2,320	8,650	2,320	Massive manganese
3681321	1,060	55.8	319	7,680	319	Manganiferous siltstone
3681357	1,520	22.4	2,160	5,950	2,160	Massive manganese
3681369	1,190	21.1	1,660	4,250	1,660	Manganiferous dolomite
3681391	604	8.4	2,140	2,760	2,140	Massive and brecciated manganese
3681409	25	0.03	8	644	8	Yellow-green quartz rich manganese
3681414	205	5.4	42	896	42	Weathered manganese breccia

Table 1: Xmas prospect historic rock chip manganese sample results.

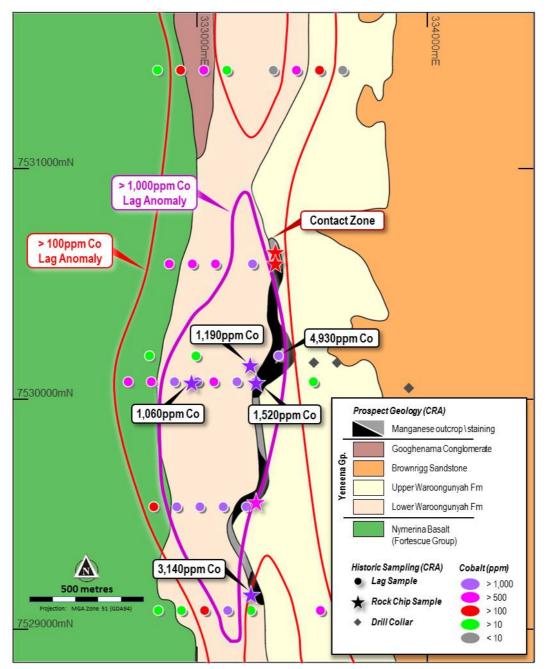


Figure 1: Xmas prospect geology, lag and rock chip sample plan.

The discontinuous lens of massive to brecciated cobalt-manganese mineralisation at Xmas occurs at a transitional contact between the Upper and Lower Waroongunyah Formation, marking a change from dolomite, dolomitic sandstone and siltstone (Lower) to white to pale grey-yellow weathered, bleached siltstone with rare gritty sandstone interbeds (Upper) (Figure 1). Cobalt-manganese deposits such as that targeted at Xmas are a recognised source of cobalt, with potential for straightforward beneficiation and relatively simple metallurgical recovery processes.

Lag sampling at the Xmas prospect undertaken by CRA Exploration involved collecting the -2mm and +1mm soil fraction at each sample location. The strong correlation between high cobalt and high manganese assay values, and a clear association with elevated barium and zinc values, suggest potential for supergene enrichment of these elements in the near surface weathering profile within the lag anomaly (Table 1, Figure 1, and Appendix 1). Subsequent work by CRA did not test this potential, with a single line

comprising 2 RC and one diamond holes drilled to the east of the outcrop. Further work will be required to determine the extent of this enrichment.

As the Xmas prospect is at an early stage of evaluation, the next phase of work planned will comprise geological mapping, rock chip sampling and geophysics (reprocessing historic data, and acquisition of new data), to establish targets for drill testing both at Xmas and potentially for repeats within the host formation. This work will be completed in parallel with advancing a number of copper and cobalt prospects in the Oakover project, including at Western Star where recent IP survey results indicated the potential for depth extensions of high grade surface copper and cobalt mineralisation (see ASX announcement dated 19 December, 2017).

Based on the results of the work at Xmas, the Company has recently applied for two new exploration licences, one to the east and south of the Xmas prospect, and the other further north, in order to secure tenure over more than 50km of strike of the prospective Waroongunyah Formation (Figure 2). Additional regional exploration will therefore concentrate on discovering repeats of the Xmas mineralisation within this unit.

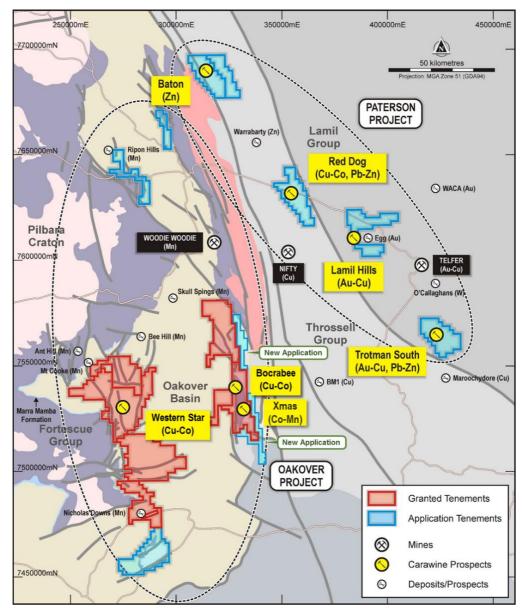


Figure 2: Oakover and Paterson Project tenement location plan, with location of the Xmas prospect and new tenement applications.

21 December 2017

ENDS

For further information please contact:

David Boyd Managing Director Tel: +61 8 6555 8777 info@carawine.com.au Media: Yvonne Ball Citadel-MAGNUS Tel: +61 448 232 398 yball@citadelmagnus.com

COMPLIANCE STATEMENTS

REPORTING OF EXPLORATION RESULTS

The information in this announcement that relates to Exploration Results is based on information compiled by Mr David Boyd, a Competent Person who is a Member of the Australian Institute of Geoscientists (AIG). Mr Boyd is a full-time employee and Managing Director of Carawine Resources Ltd and has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activities being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves' ("JORC Code (2012)"). Mr Boyd consents to the inclusion in this Report of the matters based on his information in the form and context in which it appears.

PREVIOUSLY REPORTED INFORMATION

This announcement includes information that relates to Exploration Results prepared and first disclosed under the JORC Code (2012). The information was extracted from the Company's previous ASX Announcements as follows:

- Western Star DDIP results: "Significant IP Anomaly Identified Beneath Surface Copper Cobalt Mineralisation" 19 December, 2017
- Initial public offer Prospectus: "Carawine Resources Prospectus" 12 December, 2017

Copies of these are available from the ASX Announcements page of the Company's website: <u>www.carawine.com.au</u>

The Company confirms that it is not aware of any new information or data that materially affects the information included in the relevant market announcements. The Company confirms that the form and context in which the competent person's findings are presented have not been materially modified from the relevant original market announcements.

FORWARD LOOKING AND CAUTIONARY STATEMENTS

Some statements in this announcement regarding estimates or future events are forward-looking statements. They include indications of, and guidance on, future earnings, cash flow, costs and financial performance. Forward-looking statements include, but are not limited to, statements preceded by words such as "planned", "expected", "projected", "estimated", "may", "scheduled", "intends", "anticipates", "believes", "potential", "predict", "foresee", "proposed", "aim", "target", "opportunity", "could", "nominal", "conceptual" and similar expressions. Forward-looking statements, opinions and estimates included in this report are based on assumptions and contingencies which are subject to change without notice, as are statements about market and industry trends, which are based on interpretations of current market conditions. Forward-looking statements may be affected by a range of variables that could cause actual results to differ from estimated results, and may cause the Company's actual performance and financial results in future periods to materially differ from any projections of future performance or results expressed or implied by such forward-looking statements. So there can be no assurance that actual outcomes will not materially differ from these forward-looking statements.

ABOUT CARAWINE RESOURCES

Carawine Resources Limited is an exploration company whose primary focus is to explore for, and ultimately develop, economic gold, copper and base metal deposits within Australia. The Company has four gold, copper, cobalt and base metal projects, each targeting high-grade deposits in well-established mineralised provinces throughout Australia.

JAMIESON PROJECT (Au-Cu, Zn-Au-Ag)

The Jamieson Project is located near the township of Jamieson in the central eastern Victorian Goldfields and comprises granted EL5523, covering an area of 34 km² and containing the Hill 800 gold and Rhyolite Creek zinc-gold-silver prospects. In June 2017, the Company entered into the Jamieson Agreement to earn an interest of 100% in the Jamieson Project.

Hill 800 was discovered by New Holland Mining NL (New Holland) in 1994, following sampling of outcropping gold-rich gossans, with drilling returning results with significant widths and high gold grades. The prospect is a volcanic-hosted massive sulphide (VHMS) gold-copper system with similar host rock, age and mineralisation style to the 1.5Moz Henty gold deposit in Western Tasmania. The Rhyolite Creek Prospect, located about 5km south of Hill 800, was discovered in 2008, with diamond drilling intersecting a zone of strong alteration and sulphide mineralisation returning high grade zinc, gold and silver from an interpreted seafloor VHMS system.

OAKOVER PROJECT (Cu-Co)

Located in the highly prospective Eastern Pilbara region, the Oakover Project comprises seven granted exploration licences and three exploration licence applications with a total area of about 2,655km², held 100% by the Company. The Oakover Project is centred on the Proterozoic Oakover Basin, prospective for copper, cobalt, manganese and iron. At Western Star the Company is developing a significant carbonate-hosted copper target. Numerous additional historic copper and cobalt prospects will be evaluated along with the area's potential for significant manganese, and to a lesser extent, iron mineralisation.

PATERSON PROJECT (Au-Cu, Cu-Co)

The Paterson Project, situated in the Paterson Province at the eastern edge of the Pilbara Craton, is dominated by Proterozoic age rocks of the Rudall Metamorphic Complex and the overlying Yeneena Supergroup. The Paterson area is host to the Telfer Au-Cu deposit, and the Nifty and Maroochydore stratabound Cu-(Co) deposits. Carawine's Paterson Project comprises five exploration licence applications over an area of about 989km² across four regions: Lamil Hills, Trotman South, Red Dog and Baton.

FRASER RANGE PROJECT (Ni-Cu-Co)

The Fraser Range Project includes the Red Bull, Bindii, Big Bullocks and Similkameen tenements, prospective for magmatic nickel-sulphide deposits such as that at the Nova nickel-copper-cobalt operation. Carawine has a joint venture with Independence Group NL (IGONL), who currently hold a 51% interest in the Tenements and can earn an additional 19% interest by spending \$5 million within 5 years. As a dedicated nickel explorer with a long term commitment to the region, the Company considers IGO is well placed to carry the Project forward, providing the Company with significant exposure to exploration success in the Fraser Range.

ASX Code:	CWX	Market Capitalisation:	A\$12.9m	
Issued shares:	55m	Cash (at listing, excluding IPO costs):	A\$7m	

21 December 2017

Appendix 1: Sample listings

Lag sample results

Company	Bonort	Sample	Easting	Northing	Ag	As	Ва	Bi	Ca	Ce	Со	Cr	Cu	Eu
Company	Report	Sample	Easting	Northing	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
CRA	a40181	2762803	332798	7530193	1.32	29	1670	1.49	346	252	57.9	741	78	3
CRA	a40181	2762804	333355	7530193	0.67	11	16400	0.7	1380	897	4930	24	247	17
CRA	a40181	3681292	333006	7530081	0.25	30	13900	0.8	1110	640	2970	90	169	11.9
CRA	a40181	3681324	333076	7530081	0.25	31	7780	0.8	2570	490	768	180	83	4.78
CRA	a40181	3681326	333176	7530081	0.25	30	10200	0.8	840	2680	1090	150	116	5.82
CRA	a40181	3681330	333256	7530081	0.25	40	12000	0.2	10900	990	1810	40	110	11.5
CRA	a40181	3681335	333506	7530081	0.25	56	6890	1.2	2320	36.7	12	630	27	1.08
CRA	a40181	3681381	332906	7530081	0.25	42	10200	1.2	760	510	1550	160	135	7.4
CRA	a40181	3681382	332806	7530081	0.25	37	11900	2	1490	1510	950	290	113	10.8
CRA	a40181	3681385	332706	7530081	0.25	40	9660	1.2	710	1120	894	600	79	5.08
CRA	a40181	3681386	333016	7529540	0.25	68	17500	2.6	900	780	2320	260	364	4.96
CRA	a40181	3681387	332916	7529540	0.25	29	23900	1	6250	720	2100	230	211	8.42
CRA	a40181	3681389	333116	7529540	0.25	19	34500	1.2	2910	2020	2870	70	238	15.4
CRA	a40181	3681390	333216	7529540	0.25	36	30400	1	9180	1170	2030	160	108	12.2
CRA	a40181	3681393	333036	7529091	0.25	39	3570	1.6	1610	340	197	590	75	2.54
CRA	a40181	3681394	332936	7529091	0.25	41	1910	1	1690	140	63	290	53	2.2
CRA	a40181	3681395	332836	7529091	0.25	22	378	0.6	510	92.6	31	190	50	1.52
CRA	a40181	3681396	333136	7529091	0.25	43	21700	0.8	1740	1480	2290	150	337	11.5
CRA	a40181	3681397	333236	7529091	0.25	43	1840	1.4	1560	160	46	470	65	2.08
CRA	a40181	3681403	333536	7529091	0.25	32	3830	0.6	1050	1540	721	160	130	4.28
CRA	a40181	3681404	332983	7530591	0.25	37	6750	1	2740	880	713	240	94	4.7
CRA	a40181	3681405	333083	7530591	0.25	34	9970	0.8	1650	1130	951	240	77	5.1
CRA	a40181	3681406	333243	7530591	0.25	46	12700	1	1670	680	1080	250	57	7.3
CRA	a40181	3681408	333343	7530591	0.25	37	366	0.8	570	48.6	214	210	28	1.1
CRA	a40181	3681416	332883	7530591	0.25	28	11500	1.2	470	840	896	400	73	6.62
CRA	a40535	2762802	332998	7530193	1.41	32	1680	1.46	341	198	52.1	716	78	2
CRA	a40535	3681283	333132	7531430	0.25	74	346	1.8	980	68.2	23	680	28	1.32
CRA	a40535	3681284	333032	7531430	0.25	28	17900	1.4	850	2580	990	270	70	7.84
CRA	a40535	3681285	332932	7531430	0.25	25	6530	1.6	240	1170	227	350	87	4.14
CRA	a40535	3681286	332832	7531430	0.25	10	1220	0.2	770	120	45	130	217	1.56
CRA	a40535	3681287	333332	7531430	0.25	50	2080	2	290	41.7	6	620	20	0.94

Company	Report	San	nple	Easting		Northi	ing		Ag ppm	As ppm	Ba ppm	Bi ppm	Ca pp		Ce ppm	Co ppm	Cr ppm	Cu ppm	Eu ppm
CRA	a40535	368	1288	333432		75314	30		0.25	56	7400	0.8	70	0	1360	650	360	80	4.92
CRA	a40535	368	1289	333532		75314	30		0.25	144	2720	1.2	36	0	370	407	560	39	2.32
CRA	a40535	368	1290	333632		75314	30		0.25	72	5420	2.4	63	0	47	7	810	20	1.18
CRA	a40535	368	1388	332816		75295	40		0.25	29	6450	0.6	229	90	280	230	340	56	3.1
Lag sample i	results (coi	ntinued)																	
Sample	Fe pct	K ppm	La ppm	Mg ppm	Mn ppn		Mo ppm	Na ppm	Ni ppm	P ppm	Pb ppm	Sb ppm	Th ppm	Ti ppm	U ppm	W ppm	Zn ppm	Lag Co	ondition
2762803	46.7	512	41.5	455	368		3.49	174	33	758	45.8	0.95	43.8	7540	2.9	0.55	58	pa	oor
2762804	16.9	36400	58.4	3480	1810		3.35	727	2050	1790	188	1.57	19.7	2530	82	3.49	1330		air
3681292	17.6	13700	43.8	3410	1670		2	490	1430	1320	140	1.4	17.7	1970	51.9	7	1020		oor
3681324	28.2	13000	120	3720	7700	00	4	360	220	610	125	2	20.6	2390	9.95	9	346	Po	oor
3681326	28.2	12000	110	1990	1220	00	4	630	376	590	315	1.4	21.7	1050	16.5	7.5	1320	Fa	air
3681330	11.8	10100	250	1710	3450	00	3.5	760	604	620	35	0.8	11.3	590	24.1	4.5	2380	Fa	air
3681335	45.1	500	21.3	1050	257	0	2.5	630	8	520	60	3.8	37.8	4630	2.1	2.5	28	Go	bod
3681381	21.1	14300	34.2	2380	1250	00	3.5	420	610	1990	150	2	17.9	2230	13.6	8.5	548	Po	oor
3681382	33.3	11100	130	4530	6950	00	5	240	410	820	130	3.6	20.8	4160	11	9.5	209	Po	oor
3681385	48.8	6400	91	1300	8560	00	3.5	250	186	940	160	3.6	34	5500	8	7	275	Po	oor
3681386	18.5	12900	55.7	2060	1550	00	3.5	510	700	1170	870	4.2	23.4	2940	6.75	23	652	Po	oor
3681387	20.4	10100	110	5440	1700	00	4.5	670	772	1160	145	2	15.1	2910	4.8	9	448	Рс	oor
3681389	9.15	14100	200	4170	2330	00	2	670	672	770	240	1.8	14.9	1650	27.4	22	486	Po	oor
3681390	21.9	9200	110	3260	1550	00	3	470	260	440	165	2.6	31.6	2200	15.6	11	376	Po	oor
3681393	44.8	4100	58.1	1090	3310	00	3	140	80	590	135	4.8	39.9	5720	5.5	7	78	Fa	air
3681394	40	11300	61.6	2990	1630		3	210	42	690	60	3	24.6	3690	7.15	13	86		air
3681395	26.6	9200	33.4	12600	454		2	600	50	550	20	1.2	11.5	3240	2.25	2.5	156		bod
3681396	17.8	22700	150	2700	1960		4	420	510	630	210	1.8	19.4	2090	25.5	11	440		air
3681397	40.7	4800	73.6	1500	2300		4.5	170	90	600	75	4.6	33.3	4780	3.35	7.5	82		air
3681403	31.6	12400	84.8	3150	4270		2	300	502	600	125	2.8	17.7	1640	12.4	5.5	694		bod
3681404	32.2	9300	77	3580	1050		3.5	330	250	790	105	2.6	24.4	2450	12.9	6.5	668	Fa	air
3681405	30.2	10800	95.4	1960	1340		3.5	360	292	670	145	2.4	21	1830	15.2	6.5	866		
3681406	40.7	13300	78.7	2880	7970	-	4	410	274	960	150	2.8	20.2	1900	13.7	9	656		
3681408	51.3	5100	17	2200	469		2	210	176	1050	50	2.2	10.9	890	11.6	2.5	912		bod
3681416	41.4	6900	67.6	2120	5870		5	740	228	1000	180	3	28.2	8000	5.25	5	206		bod
2762802	46.7	250	37.6	455	387	0	3.26	174	33	760	43.6	1.62	44	7910	2.93	0.93	109	go	bod

Sample	Fe		К	La	Ν	Иg	Mn	Мо	Na	Ni	Р	Pb	,	Sb	Th	Т	i U		w	Zn	Lag Con	dition
•	pct		pm	ppm		pm	ppm	ppm	ppm	ppm	ppm			ppm	ppm				pm	ppm	0	
3681283	44500	-	300	38	10	030	1630	3	80	16	720	50	1	4.2	59.5	53:			6	39	Рос	or
3681284	37300	0 4	500	87.6	20	090	70400	7	730	94	980	11)	2	23.5	43			4	102	Poc	or
3681285	42600	0 1	000	39.2	6	00	19600	4	200	28	840	40	,	2.4	27.8	54	70 2.	7 3	3.5	66	Poc	or
3681286	35200	0 1	000	22.8	8	90	1220	3	200	52	1150) 10	1	0.2	6.25	568	30 2.	2 ().5	131	Рос	or
3681287	48200	0 1	000	19.4	4	40	585	2.5	200	6	550	45	,	3.6	47.2	570	50 2.0)5	4	31	Рос	or
3681288	21800	0 6	000	110	12	140	202000	2.5	480	240	510	14	5	3	54.4	220	0 22	.3	2	1400	Goo	bd
3681289	33700	0 6	700	28.9	14	430	37500	2.5	330	306	750	16	C	6	59.2	26	50 8.3	35 4	1.5	1170	Fai	r
3681290	46400	0	700	19.1	5	80	796	3	370	6	530	55	,	5.2	61.1	. 519	2.3	35 4	1.5	21	Рос	or
3681388	40000	0 4	200	63.7	11	300	17600	3.5	830	88	830	45	,	2.2	17.1	. 344	40 2.3	35	3	120	Рос	or
Rock chip s	sample re	esults																				
C	Deveent	Comm			North	h :	Deceminatio						A	g	AI	As	Au	Ва	Bi	Ca	Ce	Со
Company	Report	Sampl	e Ea	sting	Nort	ning	Descriptio	n					pp	m	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
CRA	a40181	36810	30 33	3236	7529	162	Massive N	In rare stro	ongly fe r	ich silt tr	r. white a	In oxide	s 0.1	17 1	.0000	11	0.0025	8650	0.16	12300	0 442	3140
CRA	a40181	36813	21 33	2976	7530	081	Strongly N	/In coated :	siltstone				0.2	24 4	4500	3	0.0025	7680	0.22	704	418	1060
CRA	a40181	36813	57 33	3256	7530	081	Massive N	In from ler	าร				0.1	14 4	4660	11	0.0025	5950	0.05	15200	0 338	1520
CRA	a40181	36813	69 33	3233	7530	152	Grey dolo	mite lens v	vithin the	e Mn lens	S		0.1	12 (6810	13	0.0025	4250	0.11	16000	0 666	1190
CRA	a40181	36813	91 33	3256	7529	562	Massive a	nd breccia	ted Mn o	n sst/ do	olomite k	oundary	/ 0.0	05 .	7710	180	0.0025	2760	0.05	76900) 140	604
CRA	a40181	36814	09 33	3340	7530	591	Yellow gre	een qtz rich	n mn				0.0	JS 3	3640	3	0.0025	644	0.18	640	7.5	25
CRA	a40181	36814	14 33	3343	7530	641	Weathere	d Mn brec	cia				0.0	J5 1	.4900	29	0.0025	896	0.16	919	39	205
Rock chip s	ample re	esults (continu	ued)																		
	Cr	Cu	Fe		К	La	Mg	Mn	Мо	Na	Nb	Ni	Р	F	b	Pd	Pt	Th	U	v	Zn	Zr
Sample	ppm	ppm	ppm	р	pm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ו p	om	ppm	ppm	ppm	ppn	n ppm	ppm	ppm
3681030	76	147	28800	10	300	137	5350	283700	10	1280	5	979	887	7.	83	0.0025	0.025	44	12.8	3 159	2320	26
3681321	20	162	17800	54	200	47	1870	55800	5	675	5	378	1030) 10	0.2	0.0025	0.025	5	20.2	2 52	319	113
3681357	19	87	44000	11	400	58	6130	223700	5	780	5	542	672	. 0).5	0.011	0.025	5	10.9	€ 51	2160	18
3681369	23	120	33300	10	100	48	4380	211300	5	660	5	510	331	. 12	2.4	0.01	0.025	5	12	85	1660	21
3681391	23	108	244000) 43	380	57	6240	84000	5	387	5	610	409	1	2	0.008	0.025	5	18.9	326	2140	21
3681409	19	8	45500	5	90	5	384	328	16	144	5	131	453	9.	29	0.0025	0.025	5	1.68	3 54	76	8
3681414	25	27	463000		100	22	2990	5380	5	387	5	199	807		4	0.0025	0.025	5	11	147	690	42

Coordinate system is GDA 94 MGA zone 51, determined by handheld GPS accuracy +/- ~30m

Appendix 1: JORC (2012) Table 1 Report

Historic information sourced from CRA Exploration Reports A40181: "Annual Report Year Ending February 1994, Bocrabee E45/1310-1314, E46/302-303, WA, SF1-09 by P.D. Agnew, October 1993. Report to the WA Department of Minerals and Energy" and A40535: "Final Report for Exploration Licences E46/302, 303, E45/1310, 1311, Bocrabee 1, 2, 3 and 4,Balfour Downs SF1-09 by P.D. Agnew, February 1997. Report to the WA Department of Minerals and Energy."

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information.	 employed. Lag samples were collected from surface with a broom and dustpan from a radius of 10m-50m from each sample site, and sieved to collect the -2mm / +1mm fraction, collecting between 0.5kg and 5kg samples. Lag samples therefore have selectively sampled only a particular size fraction.
Drilling techniques	Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face- sampling bit or other type, whether core is oriented and if so, by	Not Applicable

21 December 2017

Criteria	JORC Code explanation	Commentary
	what method, etc).	
Drill sample recovery	Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	Not Applicable
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged.	 Lag and rock chip samples were geologically logged and described with comments.
Sub-sampling techniques and sample preparation	If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled.	 Lag samples were collected from surface with a broom and dustpan from a radius of 10m-50m from each sample site, and sieved to collect the -2mm / +1mm fraction, collecting between 0.5kg and 5kg samples. Lag samples therefore have selectively sampled only a particular size fraction. Rock chip samples were collected as 2kg to 5kg at each site, with manganiferous material selectively sampled. These are industry standard methods for reconnaissance level exploration
Quality of assay data and laboratory tests	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is	 Lag samples Analysed by Multilabs in Welshpool, WA

Criteria	JORC Code explanation	Commentary
	considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established.	 First wet sieved to remove silt and organic matter. Samples analysed as follows: ICP-MS Ag, As, Bi, Ce, Co, Eu, La, Mo, Pb, Sb, Th, U, W; ICP-OES Ba, Ca, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, P, Ti, Zn. Rock chip samples Analysed by Analabs in Welshpool, WA Samples dried, crushed and pulverised to -180#, then a 300g split taken and fine pulverised Samples analysed as follows: ICP-MS Ag, Pb, U; ICP-OES Al, Ba, Bi, Ca, Ce, Co, Cr, Cu, Fe, K, La, Mg, Mn, Mo, Na, Nb, Ni, P, Th, V, Zn, Zr; Fire Assay AAS: Au, Pd, Pt; Hydride AAS: As. Standard industry practices were used in the collection and assaying of samples. The assay data have sufficient quality for the reporting of Exploration Results in the form and context of this report.
Verification of sampling and assaying	The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data.	 Data is documented by CRA Exploration in Mines Department Reports No assay data have been adjusted.
Location of data points	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control.	 Sample locations were surveyed by a hand held GPS +/-30m, at the time of sample collection. RL was not recorded and is not relevant to surface point samples. Coordinates reported are MGA Zone 51. Location data is considered to be of sufficient quality for reporting of Exploration Results.
Data spacing and distribution	Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.	 Selective sampling based on field observation and outcrops identified as hosting potential for mineralisation. Should not be considered representative of the rock mass as a whole. See figures in body of the report for locations.

Criteria	JORC Code explanation	Commentary
	Whether sample compositing has been applied.	
Orientation of data in relation to geological structure	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	 Samples are representative only of the material sampled, and should not be considered representative of the rock mass as a whole.
Sample security	The measures taken to ensure sample security.	• No measures taken regarding sample security have been reported however this is not considered a high risk given the Project location.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	Not Applicable

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	Statement	Commentary
Mineral tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	Canning Well on the Balfour Downs 1:250,000 map sheet, approximately 200km northeast of Newman in Western Australia. The tenement was granted to Carawine Resources Ltd on 15 May 2017. Subsequently it has been transferred to. The tenement is due to expire on 14 May 2022.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	• Results reported here were from work done and reported by CRA Exploration from 1992-1994.
Geology	Deposit type, geological setting and style of mineralisation.	• The Oakover project is situated within the Oakover Basin, a sedimentary basin occurring along the eastern margin of the Archean Pilbara Craton. The geological setting of the Oakover Basin has been described by various workers in published and unpublished reports, as

Criteria	Statement	Со	ommentary
		•	follows: Flat-lying to gently dipping Carawine Dolomite (2.6 Ga) of the Archean Hamersley Group dominates the centre of the Oakover Basin and is conformably overlain by the Pinjian Chert Breccia, representing a weathering product formed from sub aerial exposure dissolution and collapse of the dolomite. At the base of the Carawine Dolomite, defining and exposed in places along the western and eastern margins of the basin, are gently to moderately dipping basalt, basaltic volcanoclastic (Fortescue Basalt) and shale and chert (Jeerinah Formation) units of the older Fortescue Group (2.7 Ga) in the Hamersley Group. Along the south eastern margins of the Oakover Basin, conglomerate, sandstone, siltstone and dolomite of the 850 Ma Tarcunyah and Yeneena Groups in the Officer Basin (equivalent of the Nifty Copper Mine host Broadhurst formation) unconformably overlie the Manganese Subgroup, or Fortescue Group, marked at its base within the Company's tenements by the Googenhama Conglomerate and Waroongunyah Formation. The Xmas prospect is centred on a discontinuous lens of massive to brecciated manganese oxides and silicates exposed along more than 1km of strike within the Waroongunyah Formation. In the prospect area the Waroongunyah Formation and Googhenama Conglomerate unconformably overlies Fortescue Group Nymerina basalt. Manganese mineralisation is at the transition from lower Waroongunyah red brown gritty dolomitic sandstone and siltstone to upper Waroongunyah buff brown and white dolomitic siltstone, laminated dolomite and fine grained dolomitic grainstones. It appears to infill brecciated dolomitic siltstone, and in places is present as pods of massive manganese oxide and silicate.
Drill hole Information	A summary of all information material to the understanding of the exploration results including a tabulation of the following	•	Not Applicable
	information for all Material drill holes: easting and northing of the drill hole collar		

21 December 2	2017
---------------	------

Criteria	Statement	Commentary
	elevation or RL (Reduced Level – elevation above sea level in	
	metres) of the drill hole collar	
	dip and azimuth of the hole	
	down drill hole length and interception depth	
	drill hole length.	
	If the exclusion of this information is justified on the basis that	
	the information is not Material and this exclusion does not	
	detract from the understanding of the report, the Competent	
	Person should clearly explain why this is the case.	
Data aggregation	In reporting Exploration Results, weighting averaging	Not Applicable
methods	techniques, maximum and/or minimum grade truncations (eg	
	cutting of high grades) and cut-off grades are usually Material	
	and should be stated.	
	Where aggregate intercepts incorporate short lengths of high	
	grade results and longer lengths of low grade results, the	
	procedure used for such aggregation should be stated and some	
	typical examples of such aggregations should be shown in detail.	
	The assumptions used for any reporting of metal equivalent	
	values should be clearly stated.	
Relationship	These relationships are particularly important in the reporting of	Not Applicable
between	Exploration Results.	
mineralisation	If the geometry of the mineralisation with respect to the drill hole	
widths and intercept	angle is known, its nature should be reported.	
lengths	If it is not known and only the down drill hole lengths are	
	reported, there should be a clear statement to this effect (eg	
	'down drill hole length, true width not known').	
Diagrams	Appropriate maps and sections (with scales) and tabulations of	See body of the report.
	intercepts should be included for any significant discovery being	
	reported These should include, but not be limited to a plan view	
	of drill hole collar locations and appropriate sectional views.	
Balanced reporting	Where comprehensive reporting of all Exploration Results is not	• All information considered material to the reader's understanding of

Criteria	Statement	Commentary
	practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	the Exploration Results has been reported.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	 All information considered material to the reader's understanding of the Exploration Results has been reported.
Further work	The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	 Further work is detailed in the report.